纳什均衡在货币政策效应中的应用
(1)博弈论下的货币政策博弈分析
利用博弈论方法分析宏观金融博弈问题。因而,博弈论是宏观金融博弈分析的方法论基础。纳什在195O年和1951年发表了两篇关于非合作博弈的重要文章,从一般意义上定义了非合作博弈及其均衡解.并证明了均衡的存在。基本奠定了现代非合作博弈论的基础。因而,该均衡以后被博弈理论称为“纳什均衡”。即是指由所有的参与者的最优策略组成的策略组合。
在这种策略组合中 给定其他参与者的策略,没有任何单个参与者有积极性选择其他策略 也就没有人主动去打破这种均衡。相反如果一种均衡或制度安排,如果不是一种纳什均衡.即不是所有参与者的最优策略组合 那么,这种组合就不能成立或者至少不能持续。合作博弈强调团体理性、效率和公平。而非合作博弈强调个人理性、个人最优决策。其结果可能是有效的也可能是无效的。现实中大量的经济博弈问题是非合作博弈。非合作博弈理论的发展为其在经济研究中的广泛应用创造了条件并推动了合作博弈的进一步发展。
(2)纳什均衡在货币政策效应中的应用
在理性预期条件下,假定中央银行对货币增长有完全的控制能力。公众的预期完全理性,不存在真实供给冲击和货币流通速度变化的影响。通货膨胀率等于货币供给增长率,通货膨胀预期,等于货币供给增长率。且中央银行期望的经济增长率与潜在的经济增长率相等。
可得该货币政策博弈的支付矩阵如下:

矩阵中m=0表示中央银行选择零的货币增长率 m=1表示中央银行选择正的货币增长率:公众策略的含义同上。由支付矩阵可知对中央银行来说,m=1的效用严格优于m=0的效用,m=1为其最优策略。在理性预期下,公众迅速认识到中央银行会选择正的货币增长率,其必然选择m=1以使其效用最大化,该博弈模型的纳什均衡是中央银行选择正的货币增长率,公众选择正的通货膨胀率预期,效用函数为(0,5,0)。均衡结果显示货币政策只会影响通货膨胀率而真实产出不变。
货币政策博弈具体表现为货币政策的决策和执行过程中存在动态不一致性问题。博弈主体在当前做出的关于未来的最优决策,在决策执行时对决策制定者已不再是最优决策.因而他必然要调整其决策。
例如 在公众预期形成之前 对于货币政策制定者来说,零通货膨胀(或较低通货膨胀)可能是最优的选择。因而为了影响公众预期,他可能在此选择和许诺他将实行零通货膨胀(或较低通货膨胀)。但是,当公众预期形成以后零通货膨胀(或较低通货膨胀)对政策制定者来说已不是最优决策。为了获得非预期通货膨胀对经济增长和就业增加的刺激作用,政策制定者必须实行正的(或更高的)通货膨胀.在完全信息条件下公众知道政策制定者会这样做.因而他的许诺是不可置信的。
具有理性和完全信息的公众不会被其愚弄。最后结果必然是被预期到的正的(或更高的)通货膨胀。相机选择货币政策的这种通货膨胀(通货紧缩)倾向是由该博弈结构内生性决定的,即该均衡(纳什均衡)允许了不可置信的威胁策略的存在,中央银行关于零通胀(或低通胀)的许诺是不可置信的。
要消除货币政策的通货膨胀(通货紧缩)倾向 必须消除这种不可置信因素——中央银行在公众预期形成之前承诺其将毫不改变地执行单一规则的货币政策,通过承诺行动中央银行获得了影响公众预期的能力。
因而,在选择其货币供给增长率时.就必须考虑它对公众预期的立即和充分的影响 就不能期望制造非预期通货膨胀(通货紧缩)来刺激经济、增加就业或为预算融资。这就是说,提高政策的稳定性和可信程度是消除通货膨胀(通货紧缩)的关键。
博弈论, 博弈, 通货膨胀, 货币
风险提示及免责条款
市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!
