r与数据挖掘——国外专题博客

r与数据挖掘——国外专题博客
http://www.RDataMining.com博主致力于研究R语言在数据挖掘方面的应用与数据挖掘有关或者有帮助的R包和函数的集合。聚类常用的包: fpc,cluster,pvclust,mclust基于划分的方法: kmeans, pam, pamk, clara基于层次的方法: hclust, pvclust, agnes, diana基于模型的方法: mc

宽客网,量化投资,宽客俱乐部
                                    http://www.RDataMining.com

  博主致力于研究R语言在数据挖掘方面的应用

与数据挖掘有关或者有帮助的R包和函数的集合。

  1. 聚类

常用的包: fpc,cluster,pvclust,mclust

基于划分的方法: kmeans, pam, pamk, clara

基于层次的方法: hclust, pvclust, agnes, diana

基于模型的方法: mclust

基于密度的方法: dbscan

基于画图的方法: plotcluster, plot.hclust

基于验证的方法: cluster.stats

  1. 分类

常用的包:

rpart,party,randomForest,rpartOrdinal,tree,marginTree,

maptree,survival

决策树: rpart, ctree

随机森林: cforest, randomForest

回归, Logistic回归, Poisson回归: glm, predict, residuals

生存分析: survfit, survdiff, coxph

  1. 关联规则与频繁项集

常用的包:

arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和关联规则

DRM:回归和分类数据的重复关联模型

APRIORI算法,广度RST算法:apriori, drm

ECLAT算法: 采用等价类,RST深度搜索和集合的交集: eclat

  1. 序列模式

常用的包: arulesSequences

SPADE算法: cSPADE

  1. 时间序列

常用的包: timsac

时间序列构建函数: ts

成分分解: decomp, decompose, stl, tsr

  1. 统计

常用的包: Base R, nlme

方差分析: aov, anova

密度分析: density

假设检验: t.test, prop.test, anova, aov

线性混合模型:lme

主成分分析和因子分析:princomp

  1. 图表

条形图: barplot

饼图: pie

散点图: dotchart

直方图: hist

密度图: densityplot

蜡烛图, 箱形图 boxplot

QQ (quantile-quantile) 图: qqnorm, qqplot, qqline

Bi-variate plot: coplot

树: rpart

Parallel coordinates: parallel, paracoor, parcoord

热图, contour: contour, filled.contour

其他图: stripplot, sunflowerplot, interaction.plot, matplot, fourfoldplot,

assocplot, mosaicplot

保存的图表格式: pdf, postscript, win.metafile, jpeg, bmp, png

  1. 数据操作

缺失值:na.omit

变量标准化:scale

变量转置:t

抽样:sample

堆栈:stack, unstack

其他:aggregate, merge, reshape

  1. 与数据挖掘软件Weka做接口

RWeka: 通过这个接口,可以在R中使用Weka的所有算法。

Machine Learning & Statistical Learning (机器学习 & 统计学习)

网址:http://cran.r-project.org/web/views/MachineLearning.html维护人员:Torsten Hothorn

版本:2008-02-18 18:19:21

翻译:R-fox, 2008-03-18

机器学习是计算机科学和统计学的边缘交叉领域,R关于机器学习的包主要包括以下几个方面:

  1. 神经网络(Neural Networks):

nnet包执行单隐层前馈神经网络,nnet是VR包的一部分(http://cran.r-project.org/web/packages/VR/index.html)。

  1. 递归拆分(Recursive Partitioning):

递归拆分利用树形结构模型,来做回归、分类和生存分析,主要在rpart包(http://cran.r-project.org/web/packages/rpart/index.html)和tree包(http://cran.r-project.org/web/packages/tree/index.html)里执行,尤其推荐rpart包。Weka里也有这样的递归拆分法,如:J4.8, C4.5, M5,包Rweka提供了R与Weka的函数的接口(http://cran.r-project.org/web/packages/RWeka/index.html)。

party包提供两类递归拆分算法,能做到无偏的变量选择和停止标准:函数ctree()用非参条件推断法检测自变量和因变量的关系;而函数mob()能用来建立参数模型(http://cran.r-project.org/web/packages/party/index.html)。另外,party包里也提供二分支树和节点分布的可视化展示

mvpart包是rpart的改进包,处理多元因变量的问题(http://cran.r-project.org/web/packages/mvpart/index.html)。rpart.permutation包用置换法(permutation)评估树的有效性(http://cran.r-project.org/web/pa ... mutation/index.html)。knnTree包建立一个分类树,每个叶子节点是一个knn分类器(http://cran.r-project.org/web/packages/knnTree/index.html)。LogicReg包做逻辑回归分析,针对大多数自变量是二元变量的情况(http://cran.r-project.org/web/packages/LogicReg/index.html)。maptree包(http://cran.r-project.org/web/packages/maptree/index.html)和pinktoe包(http://cran.r-project.org/web/packages/pinktoe/index.html)提供树结构的可视化函数

  1. 随机森林(Random Forests):

randomForest 包提供了用随机森林做回归和分类的函数(http://cran.r-project.org/web/packages/randomForest/index.html)。ipred包用bagging的思想做回归,分类和生存分析,组合多个模型(http://cran.r-project.org/web/packages/ipred/index.html)。party包也提供了基于条件推断树的随机森林法(http://cran.r-project.org/web/packages/party/index.html)。varSelRF包用随机森林法做变量选择(http://cran.r-project.org/web/packages/varSelRF/index.html)。

  1. Regularized and Shrinkage Methods:

lasso2包(http://cran.r-project.org/web/packages/lasso2/index.html)和lars包(http://cran.r-project.org/web/packages/lars/index.html)可以执行参数受到某些限制的回归模型。elasticnet包可计算所有的收缩参数(http://cran.r-project.org/web/packages/elasticnet/index.html)。glmpath包可以得到广义线性模型和COX模型的L1 regularization path(http://cran.r-project.org/web/packages/glmpath/index.html)。penalized包执行lasso (L1) 和ridge (L2)惩罚回归模型(penalized regression models)(http://cran.r-project.org/web/packages/penalized/index.html)。pamr包执行缩小重心分类法(shrunken centroids classifier)(http://cran.r-project.org/web/packages/pamr/index.html)。earth包可做多元自适应样条回归(multivariate adaptive regression splines)(http://cran.r-project.org/web/packages/earth/index.html)。

  1. Boosting :

gbm包(http://cran.r-project.org/web/packages/gbm/index.html)和boost包(http://cran.r-project.org/web/packages/boost/index.html)执行多种多样的梯度boosting算法,gbm包做基于树的梯度下降boosting,boost包包括LogitBoost和L2Boost。GAMMoost包提供基于boosting的广义相加模型(generalized additive models)的程序(http://cran.r-project.org/web/packages/GAMMoost/index.html)。mboost包做基于模型的boosting(http://cran.r-project.org/web/packages/mboost/index.html)。

  1. 支持向量机(Support Vector Machines):

e1071包的svm()函数提供R和LIBSVM的接口 (http://cran.r-project.org/web/packages/e1071/index.html)。kernlab包为基于核函数的学习方法提供了一个灵活的框架,包括SVM、RVM……(http://cran.r-project.org/web/packages/kernlab/index.html) 。klaR 包提供了R和SVMlight的接口(http://cran.r-project.org/web/packages/klaR/index.html)。

  1. 贝叶斯方法(Bayesian Methods):

BayesTree包执行Bayesian Additive Regression Trees (BART)算法(http://cran.r-project.org/web/packages/BayesTree/index.html,http://www-stat.wharton.upenn.ed ... rs/BART%206--06.pdf)。tgp包做Bayesian半参数非线性回归(Bayesian nonstationary, semiparametric nonlinear regression)(http://cran.r-project.org/web/packages/tgp/index.html)。

  1. 基于遗传算法的最优化(Optimization using Genetic Algorithms):

gafit包(http://cran.r-project.org/web/packages/gafit/index.html)和rgenoud包(http://cran.r-project.org/web/packages/rgenoud/index.html)提供基于遗传算法的最优化程序

  1. 关联规则(Association Rules):

arules包提供了有效处理稀疏二元数据的数据结构,而且提供函数执Apriori和Eclat算法挖掘频繁项集、最大频繁项集、闭频繁项集和关联规则(http://cran.r-project.org/web/packages/arules/index.html)。

10)模型选择和确认(Model selection and validation):

e1071包的tune()函数在指定的范围内选取合适的参数(http://cran.r-project.org/web/packages/e1071/index.html)。ipred包的errorest()函数用重抽样的方法(交叉验证,bootstrap)估计分类错误率(http://cran.r-project.org/web/packages/ipred/index.html)。svmpath包里的函数可用来选取支持向量机的cost参数C(http://cran.r-project.org/web/packages/svmpath/index.html)。ROCR包提供了可视化分类器执行效果的函数,如画ROC曲线(http://cran.r-project.org/web/packages/ROCR/index.html)。caret包供了各种建立预测模型的函数,包括参数选择和重要性量度(http://cran.r-project.org/web/packages/caret/index.html)。caretLSF包(http://cran.r-project.org/web/packages/caretLSF/index.html)和caretNWS(http://cran.r-project.org/web/packages/caretNWS/index.html)包提供了与caret包类似的功能

11)统计学习基础(Elements of Statistical Learning):

书《The Elements of Statistical Learning: Data Mining, Inference, and Prediction 》(http://www-stat.stanford.edu/~tibs/ElemStatLearn/)里的数据集、函数、例子都被打包放在ElemStatLearn包里(http://cran.r-project.org/web/packages/ElemStatLearn/index.html

摘自网络
数据分析, 数据挖掘