人际图谱:Facebook的数据挖掘功臣

宽客网,量化投资,宽客俱乐部
                                      建立与发展

  Facebook的人际图谱团队创立之初的任务是把用户个人信息中的纯文字描述转化成结构化数据。如果没有这样的数据,Facebook就无法实现广告受众定位,也不能帮助你找到高中好友。为了利用用户数据中的各种细节信息,Facebook的工程师们必须建立一个数据集,其中需要包含能够将不同用户之间建立联系的各种信息。工程师们的解决办法是利用维基百科上的现有数据。

  很多用户之间的关联信息无法直接和现有页面建立联系,借助维基百科上的各种条目,Facebook工程师们建立了“数百万个‘回退’页面”,然后手动去除重合和无效的页面。此外,工程师们还需要针对用户信息中的书名和电影名等信息进行手动调整。

  Facebook的人际图谱团队还利用了WordNet数据库等工具分析用户信息,配合用户兴趣数据集向用户推荐好友。比如,在简介中提及“有些朋友会滑雪”的用户会和那些在滑雪运动页面上点“赞”的用户归类到一起。

  

       人际图谱现状

  根据Facebook工程师埃里克·孙(EricSun)的说法,人际图谱如今的增长速度是他们始料未及的。他表示,该团队目前的主要任务是“打造能够不断优化图谱的多分支、可扩展系统”。

  目前,Facebook对用户信息的挖掘已经非常深入。比如,如果你对歌曲“Help”点了赞,Facebook知道创作它的是披头士乐队,它也知道你有哪些好友喜欢披头士。如果你去了某家餐馆,Facebook知道它的位置、用户群体、用户住处。帮助Facebook发掘出如此多的数据的正是人际图谱计划。

来源:搜狐IT
数据分析, 数据挖掘, facebook, 图谱

风险提示及免责条款

市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部