车品觉——数据的本质就是还原

宽客网,量化投资,宽客俱乐部
                                    

大数据文摘一直秉承分享、合作、共赢理念,愿意为大数据理念的落地贡献力量,如果你有“干货”愿意与大家分享,请给“大数据文摘”公号留言,只要对读者有益,我们愿意为您免费发表。

数据的本质就是还原,这是收集元数据的关键方法。

当我们在进行用户的场景还原时,必须认清数据收集的领域是什么。在不同的领域里收集到的数据,可以找到与其所在领域里不同的东西,比如,搜索引擎和社交网络(SNS)得到的数据就是不一样的。而企业首先要做的是,确认用户是不是同一个人,比如在SNS里涉及的很多信息主要都是聊天内容,如果我是做 SNS 的,我就会更多地去寻找这个人和其他人的关系。他今天跟张三聊了 3 分钟,明天跟李四聊了 5 分钟,这项数据在 SNS 领域里可以获得。但当我们要真实地还原整个人的行为的话,最好要有不同领域作为互补,这会让你掌握更多更全面的信息。

你有多大的能力知道哪些数据是同一个用户的,这是企业首先必须解决的问题。然后再去关注,收集到的数据的量这么大,广度这么?宽,价值在哪里。而当企业不清楚收集到的数据是不是同一个用户的时,那这个数据又有什么用?所以,在大数据里,最重要的还是收集人的数据。

而数据的价值,正如我们前面所分析的,必须来自场景。

对于消费者数据的收集,其中一个瞄准器就是你能否还原用户购买行为的场景。基于科技的不断进步,如果有一天 Google? 眼镜成为每个人的标配,或者是有一天,我们买的每一部电脑,其本身都是跟手机捆绑的,那么这两种交叉数据是很容易获取的。

为什么场景会变得如此重要?场景是不是被准确地表达了?场景是否会成为一件事情的背景,用来还原整件事情?有一年的“十一黄金周”,我们发现很多用户使用 iPad 购物,为什么?你或许不会想到,这是因为那年的“十一黄金周”第一次实行黄金周高速公路不收过路费的政策,很多人堵在了路上,没有其他事情做,所只能以使用 iPad 购物。如果企业在分析数据的时候,没有考虑到 10月1日整个中国的高速公路都出现拥堵的这个场景,企业就没有办法还原整个场景,也就无法解释这个现象。

我还发现了一个新场景。有一天,我们研究了一些无线数据——用二维码让用户到 达我们预想让他到达的页面。我们可以看到,iPhone 手机在扫完二维码后就到达了页面,但是安卓却没有。在中国,很多装有安卓系统的手机在扫完二维码之后都无法自动跳转到关联页面。这时,安卓手机就成为用户登陆网站购物的重要场景。不管是一部 iPhone 手机、一部三星手机,还是一部其他类型的手机,手机的大小和系统的兼容性本身都能对场景产生巨大的影响。而如果我们盲目地去观察数据本身,自以为是地认为用户没有进行点击,那就大错特错了。事实上,是他点不了。

可见,有很多看似无关紧要的东西都在场景里,而在无线移动终端的世界里,这个场景又平添了很多其他的东西,这都需要我们仔细地甄别。

当我和数据分析师们聊天时,我总是会特别提醒,在研究无线数据的时候,要特别注意的是用户在每天移动的时间点和非移动的时间点里都做了什么。从起床到睡觉,有几个时间点基本是固定的,所以基本上就可以判断每个人一天的行为走势是什么。

我曾经在一次电商大会的圆桌论坛上提出了一个观点,当时与会者都很认同,就是我建议把一些以前用来观察用户忠诚度的框架,比如 RFM 模型来做收集数据的瞄准器。有什么数据能让我更好地看到 R,更好地看到 F,更好地看到 M ? RFM 是一个收集维度,个人 PC、手机、平板电脑是另一个终端场景维度,PC 能更好地收集 R,手机能更好地收集 M,这样就可以通过场景的不断变换来收集更多的数据。

现在,有一些终端的确可以收集以前收集不到的数据。以前,我们不知道一些数据的收集背景是不是移动的,但现在可以。用户做一件事情的时候是不是正在移动?他是不是在银泰百货里面?面对不同的场景,我们的框架也要相应改变。所以,现在做数据分析报告,最后的一个问题变成了:“无线变了,这个报告的结果还是一样吗?你的报告应不应该也变一下?”

我认为,数据的本质就是还原,这是收集元数据的关键方法。如果没有这个概念,你就不知道未来你需要什么数据,就更不懂得什么是重要的数据,到最后只会产生越来越多的无从辨别的数据。一旦数据多到了连你的公司都没有办法处理的时候,那么其他会处理的人、公司和国家就会把你毫不留情地挤出市场。

“未来一定是国家和国家之间的数据大战,公司与公司之间的数据大战!”信息时代催生了海量数据的出现,这个世界上每时每刻都在产生大量的数据。此时,大数据已经不再是一个单纯的概念,而是像空气一样围绕在每个人的身边,每个人都是数据的制造者。也正是因为每个人都在通过不同的设备生产着数据,使得数据更多在“量”这个维度上不断膨胀,但是,“量”的单纯膨胀却对企业真正了解一个用户的需求产生了极大的挑战。所以,如何更好地识别各个设备的使用者是否为同一个人,如何更好地理解用户在各个不同场景下表现出来的不同需求,如何更好地理解数据融合后产生的价值,将是未来商业中每一个企业都必须考虑的问题。

在不久的将来,随着 O2O的深入和穿戴式设备的兴起,企业和企业之间必须进行更多的数据融合和交换,必须进行更多的跨行业的数据交流,这样才能更好地还原用户真正的需求,让用户在任何一个场景中都能够获得由数据带来的便利。

总而言之,更深化的数据连接使海量数据经过提炼更真实地还原了事实,也使我们运用数据科技去解码未来的需求成为可能。

摘自车品觉 新书 《决战大数据》 湛庐文化策划出版

宽客网,量化投资,宽客俱乐部

【车品觉】

国内大数据实践的先行者、数据观察家。现任阿里巴巴集团商业智能部副总裁、数据委员会会长。
拥有多元化与国际化的教育背景。生于香港,在美国、英国、澳大利亚等地接受西方教育,曾于新南威尔士大学、斯坦福大学、INSEAD商学院及清华大学经管学院等世界一流学府进修。
拥有十几年丰富的数据实战经验,并在实践中形成了独特的数据化思考方式,对电子商务未来趋势有独到见解。曾先后在汇丰银行、香港电讯盈科、微软、eBay等多家著名跨国公司任总监;曾任敦煌网首席产品官,创立了第一个以外贸交易平台为核心的搜索引擎。
公益项目“桑珠助学”发起人,助学团队迄今在甘孜资助的学生已达600余人。
数据分析, 数据挖掘

风险提示及免责条款

市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部